Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.971
Filtrar
1.
Epigenetics ; 19(1): 2341578, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38615330

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.


Assuntos
Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Bovinos , Animais , Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Desenvolvimento Muscular/genética , Apoptose , Diferenciação Celular
2.
BMC Genomics ; 25(1): 325, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561670

RESUMO

BACKGROUND: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS: The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS: This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , Proliferação de Células/genética , Diferenciação Celular/genética , RNA Mensageiro/metabolismo , Desenvolvimento Muscular/genética , Mioblastos , Luciferases/genética , Luciferases/metabolismo
3.
Genes (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540328

RESUMO

Skeletal muscle plays critical roles in providing a protein source and contributing to meat production. It is well known that microRNAs (miRNAs) exert important effects on various biological processes in muscle, including cell fate determination, muscle fiber morphology, and structure development. However, the role of miRNA in skeletal muscle development remains incompletely understood. In this study, we observed a critical miRNA, miR-24-3p, which exhibited higher expression levels in Tongcheng (obese-type) pigs compared to Landrace (lean-type) pigs. Furthermore, we found that miR-24-3p was highly expressed in the dorsal muscle of pigs and the quadriceps muscle of mice. Functionally, miR-24-3p was found to inhibit proliferation and promote differentiation in muscle cells. Additionally, miR-24-3p was shown to facilitate the conversion of slow muscle fibers to fast muscle fibers and influence the expression of GLUT4, a glucose transporter. Moreover, in a mouse model of skeletal muscle injury, we demonstrated that overexpression of miR-24-3p promoted rapid myogenesis and contributed to skeletal muscle regeneration. Furthermore, miR-24-3p was found to regulate the expression of target genes, including Nek4, Pim1, Nlk, Pskh1, and Mapk14. Collectively, our findings provide evidence that miR-24-3p plays a regulatory role in myogenesis and fiber type conversion. These findings contribute to our understanding of human muscle health and have implications for improving meat production traits in livestock.


Assuntos
MicroRNAs , Humanos , Animais , Camundongos , Suínos , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular/genética
4.
BMC Genomics ; 25(1): 272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475725

RESUMO

BACKGROUND: Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle regeneration, maintenance, and growth. Like embryonic myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study, we aimed to identify additional transcription factors that control gene expression during bovine satellite cell proliferation and differentiation. RESULTS: Using chromatin immunoprecipitation followed by sequencing, we identified 56,973 and 54,470 genomic regions marked with both the histone modifications H3K4me1 and H3K27ac, which were considered active enhancers, and 50,956 and 59,174 genomic regions marked with H3K27me3, which were considered repressed enhancers, in proliferating and differentiating bovine satellite cells, respectively. In addition, we identified 1,216 and 1,171 super-enhancers in proliferating and differentiating bovine satellite cells, respectively. Analyzing these enhancers showed that in proliferating bovine satellite cells, active enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation whereas repressed enhancers were associated with genes essential for myoblast differentiation, and that in differentiating satellite cells, active enhancers were associated with genes essential for myoblast differentiation or muscle contraction whereas repressed enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation. Active enhancers in proliferating bovine satellite cells were enriched with binding sites for many transcription factors such as MYF5 and the AP-1 family transcription factors; active enhancers in differentiating bovine satellite cells were enriched with binding sites for many transcription factors such as MYOG and TFAP4; and repressed enhancers in both proliferating and differentiating bovine satellite cells were enriched with binding sites for NF-kB, ZEB-1, and several other transcription factors. The role of TFAP4 in satellite cell or myoblast differentiation was previously unknown, and through gene knockdown and overexpression, we experimentally validated a critical role for TFAP4 in the differentiation and fusion of bovine satellite cells into myofibers. CONCLUSIONS: Satellite cell proliferation and differentiation are controlled by many transcription factors such as AP-1, TFAP4, NF-kB, and ZEB-1 whose roles in these processes were previously unknown in addition to those transcription factors such as MYF5 and MYOG whose roles in these processes are widely known.


Assuntos
Cromatina , Células Satélites de Músculo Esquelético , Animais , Bovinos , Cromatina/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Desenvolvimento Muscular/genética
5.
Cell Death Dis ; 15(3): 200, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459002

RESUMO

During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.


Assuntos
Mioblastos , Transdução de Sinais , Autofagia/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Camundongos
6.
BMC Genomics ; 25(1): 294, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504177

RESUMO

BACKGROUND: Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS: The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS: The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Suínos/genética , Animais , Bovinos , Ovinos/genética , Perfilação da Expressão Gênica/métodos , Gado/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Esquelético/metabolismo , MicroRNAs/genética , Desenvolvimento Muscular/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542412

RESUMO

Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows: (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra/metabolismo , Organogênese/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Muscular/genética
8.
Int J Biol Macromol ; 264(Pt 2): 130737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460642

RESUMO

Muscle development and intramuscular fat (IMF) deposition are intricate physiological processes characterized by multiple gene expressions and interactions. In this research, the phenotypic variations in the breast muscle of Jingyuan chickens were examined at three different time points: 42, 126, and 180 days old. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify differentially methylated genes (DMGs) responsible for regulating muscle development and IMF deposition. The findings indicate a significant increase in breast muscle weight (BMW), myofiber diameter, and cross-sectional area, as well as IMF content, in correlation with the progressive number of growing days in Jingyuan chickens. The findings also revealed that 380 hypo-methylated and 253 hyper-methylated DMGs were identified between the three groups of breast muscle. Module gene and DMG association analysis identified m6A methylation-mediated multiple DMGs associated with muscle development and fat metabolism. In vitro cell modeling analysis reveals stage-specific differences in the expression of CUBN, MEGF10, BOP1, and BMPR2 during the differentiation of myoblasts and intramuscular preadipocytes. Cycloleucine treatment significantly inhibited the expression levels of CUBN, BOP1, and BMPR2, and promoted the expression of MEGF10. These results suggest that m6A methylation-mediated CUBN, MEGF10, BOP1, and BMPR2 can serve as potential candidate genes for regulating muscle development and IMF deposition, and provide an important theoretical basis for further investigation of the functional mechanism of m6A modification involved in adipogenesis.


Assuntos
Adipogenia , Galinhas , Animais , Galinhas/genética , Galinhas/metabolismo , Adipogenia/genética , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Desenvolvimento Muscular/genética
9.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373797

RESUMO

Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Animais , Camundongos , Miogenina/genética , Miogenina/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Autofagia/genética , Proteínas de Ligação a RNA/genética , Mamíferos/metabolismo
10.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224318

RESUMO

GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.


Assuntos
Miopatias Distais , Hexosaminas , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Desenvolvimento Muscular/genética , Suplementos Nutricionais
11.
Int J Biol Macromol ; 261(Pt 2): 129779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290628

RESUMO

Skeletal muscle growth and development in livestock and poultry play a pivotal role in determining the quality and yield of meat production. However, the mechanisms of myogenesis are remained unclear due to it finely regulated by a complex network of biological macromolecules. In this study, leveraging previous sequencing data, we investigated a differentially expressed circular RNA (circSGCB) present in fetal and adult muscle tissues among various ruminant species, including cattle, goat, and sheep. Our analysis revealed that circSGCB is a single exon circRNA, potentially regulated by an adjacent bovine enhancer. Functional analysis through loss-of-function tests demonstrated that circSGCB exerts inhibitory effects on bovine myoblast proliferation while promoting myocytes generation. Furthermore, we discovered that circSGCB primarily localizes to the cytoplasm, where it functions as a molecular sponge by binding to bta-miR-27a-3p. This interaction releases the mRNAs of KLF3 gene and further activates downstream functional pathways. In vivo, studies provided evidence that up-regulation of KLF3 contributes to muscle regeneration. These findings collectively suggest that circSGCB operates via a competing endogenous RNA (ceRNA) mechanism to regulate KLF3, thereby influencing myogenesis in ruminants and highlights it may as potential molecular targets for enhancing meat production in livestock and poultry industries.


Assuntos
MicroRNAs , Bovinos , Animais , Ovinos , MicroRNAs/genética , MicroRNAs/metabolismo , 60414 , RNA Circular/genética , RNA Mensageiro/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo
12.
J Muscle Res Cell Motil ; 45(1): 21-39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206489

RESUMO

The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.


Assuntos
Músculo Esquelético , Proteína MyoD , Proteína MyoD/genética , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Diferenciação Celular/genética , Desenvolvimento Muscular/genética
13.
J Cell Sci ; 137(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224152

RESUMO

Adult muscle stem cells (MuSCs) are critical for muscle homeostasis and regeneration, and their behavior relies on a finely regulated niche made of specific extracellular matrix (ECM) components and soluble factors. Among ECM proteins, collagen VI (Col6) influences the mechanical properties of the niche and, in turn, MuSC self-renewal capabilities. Here, we investigated whether Col6 can exert a direct function as a biochemical signal for regulating the stemness and differentiation of murine MuSCs and myoblasts. Native Col6, but not its pepsin-resistant fragment, counteracts the early differentiation of myogenic cells by reducing the expression of differentiation marker genes and preserving stemness features, with inhibition of the canonical Wnt pathway. Our data indicate that extracellular Col6 acts as a soluble ligand in delaying early myogenic differentiation by regulating intracellular signals involved in adult myogenesis.


Assuntos
Colágeno , Células Satélites de Músculo Esquelético , Camundongos , Animais , Diferenciação Celular , Colágeno/metabolismo , Músculos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo
14.
J Cell Physiol ; 239(2): e31159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212939

RESUMO

Noncoding RNAs, including miRNAs (microRNAs) and circRNAs (circular RNA), are crucial regulators of myoblast proliferation and differentiation during muscle development. However, the specific roles and molecular mechanisms of circRNAs in muscle development remain poorly understood. Based on the existing circRNA-miRNA-mRNA network, our study focuses on circUBE3C, exploring its differential expression in fetal and adult muscle tissue of the cattle and investigating its impact on myoblast proliferation, apoptosis, and differentiation. The functional analysis of overexpression plasmids and siRNAs (small interfering RNAs) targeting circUBE3C was comprehensively evaluated by employing an array of advanced assays, encompassing CCK-8 (cell counting kit-8), EdU (5-ethynyl-20-deoxyuridine), flow cytometry, western blot analysis, and RT-qPCR. In vivo investigations indicated that overexpression of circUBE3C impedes the process of skeletal muscle regeneration. Mechanistically, we demonstrated that circUBE3C interacts with miR-191 and alleviates the suppression of p27 through cytoplasmic separation, bioinformatics prediction, dual-luciferase reporter assay, and RIP (RNA immunoprecipitation). Our findings indicate that the novel circRNA circUBE3C competitively binds to miR-191, thereby inhibiting proliferation and promoting apoptosis in bovine primary myoblasts and unveiling a regulatory pathway in bovine skeletal muscle development. These findings expand our understanding of circRNA functions in mammals and provide a basis for further exploration of their role in myogenesis and muscle diseases.


Assuntos
MicroRNAs , RNA Circular , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Interferente Pequeno/metabolismo , Células Cultivadas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Cell Mol Biol Lett ; 29(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177995

RESUMO

BACKGROUND: Skeletal muscle development is pivotal for animal growth and health. Recently, long noncoding RNAs (lncRNAs) were found to interact with chromatin through diverse roles. However, little is known about how lncRNAs act as chromatin-associated RNAs to regulate skeletal muscle development. Here, we aim to investigate the regulation of chromatin-associated RNA (MYH1G-AS) during skeletal muscle development. METHODS: We provided comprehensive insight into the RNA profile and chromatin accessibility of different myofibers, combining RNA sequencing (RNA-seq) with an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). The dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to analyze the transcriptional regulation mechanism of MYH1G-AS. ALKBH5-mediated MYH1G-AS N6-methyladenosine (m6A) demethylation was assessed by a single-base elongation and ligation-based qPCR amplification method (SELECT) assay. Functions of MYH1G-AS were investigated through a primary myoblast and lentivirus/cholesterol-modified antisense oligonucleotide (ASO)-mediated animal model. To validate the interaction of MYH1G-AS with fibroblast growth factor 18 (FGF18) protein, RNA pull down and an RNA immunoprecipitation (RIP) assay were performed. Specifically, the interaction between FGF18 and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) protein was analyzed by coimmunoprecipitation (Co-IP) and a yeast two-hybrid assay. RESULTS: A total of 45 differentially expressed (DE) lncRNAs, with DE ATAC-seq peaks in their promoter region, were classified as open chromatin-associated lncRNAs. A skeletal muscle-specific lncRNA (MSTRG.15576.9; MYH1G-AS), which is one of the open chromatin-associated lncRNA, was identified. MYH1G-AS transcription is coordinately regulated by transcription factors (TF) SMAD3 and SP2. Moreover, SP2 represses ALKBH5 transcription to weaken ALKBH5-mediated m6A demethylation of MYH1G-AS, thus destroying MYH1G-AS RNA stability. MYH1G-AS accelerates myoblast proliferation but restrains myoblast differentiation. Moreover, MYH1G-AS drives a switch from slow-twitch to fast-twitch fibers and causes muscle atrophy. Mechanistically, MYH1G-AS inhibits FGF18 protein stabilization to reduce the interaction of FGF18 to SMARCA5, thus repressing chromatin accessibility of the SMAD4 promoter to activate the SMAD4-dependent pathway. CONCLUSIONS: Our results reveal a new pattern of the regulation of lncRNA expression at diverse levels and help expound the regulation of m6A methylation on chromatin status.


Assuntos
Cromatina , RNA Longo não Codificante , Animais , Cromatina/metabolismo , Galinhas/genética , Galinhas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
16.
Int J Biol Macromol ; 257(Pt 1): 128609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056741

RESUMO

Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.


Assuntos
Músculo Esquelético , Proteínas Proto-Oncogênicas c-akt , Humanos , Suínos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Diferenciação Celular/genética , Desenvolvimento Muscular/genética
17.
Poult Sci ; 103(1): 103231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980764

RESUMO

The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.


Assuntos
Galinhas , MicroRNAs , Animais , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos , Regiões 3' não Traduzidas , Diferenciação Celular , Desenvolvimento Muscular/genética
18.
Gene ; 894: 147979, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37952749

RESUMO

Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Proliferação de Células/genética
19.
Adv Sci (Weinh) ; 11(3): e2300702, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036415

RESUMO

Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.


Assuntos
Multiômica , Proteínas Musculares , RNA Circular , Bovinos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Ecossistema , Músculo Esquelético , Desenvolvimento Muscular/genética , Peptídeos/metabolismo
20.
Anim Biotechnol ; 35(1): 2286609, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032316

RESUMO

Circular RNA (CircRNA), as a classical noncoding RNA, has been proven to regulate skeletal muscle development (SMD). However, the molecular genetic basis of circRNA regulation in muscle cells remains unclear. In this study, the expression patterns of circRNAs in the longissimus dorsi muscle at embryonic day 75 and postnatal day 1 in DBGs were investigated to identify the key circRNAs that play an important role in SMD in goats. A total of 140 significantly and differentially expressed circRNAs (DEcircRNAs) were identified among the groups at different developmental stages. Among the 116 host genes (HGs) of DEcircRNAs, 76 were significantly and differentially expressed, which was confirmed by previous RNA_seq data. Furthermore, the expression pattern of 10 DEcircRNAs with RT-qPCR was verified, which showed 80% concordance rate with that of RNA_seq datasets. Moreover, the authenticity of seven randomly selected DEcircRNAs was verified by PCR Sanger sequencing. Based on the functional annotation results, among the 76 significantly and differentially expressed HGs, 74 were enriched in 845 GO terms, whereas 35 were annotated to 85 KEGG pathways. The results of this study could provide a comprehensive understanding of the genetic basis of circRNAs involved in SMD and muscle growth.


Assuntos
MicroRNAs , RNA Circular , Animais , RNA Circular/genética , Cabras/genética , Perfilação da Expressão Gênica/veterinária , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Desenvolvimento Muscular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...